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Let R be an integrally closed domain and let F be its field of fractions. Let p be a
prime ideal of R. Then
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An integral domain R is integrally closed if and only if it is the intersection of a
family of valuation rings contained in its field of fractions.

Let R be an integral domain and let F be its field of fractions. We say that R is a
valuation ring if there exists a totally ordered abelian group ' and an application
v : F — T'U{oo} which satisfies the following properties:

(V1) v(xy) = v(x) + v(y) for x,y € F.
(V2) v(x +y) min(v(x), v(y)) for x,y € F.
(V3) v(0) =
(V4) {X€F| ( ) >0} =R.
In particular, if v(x) # v(y), Property (V2) gives v(x + y) = min(v(x), v(y)).
Further, Property (V1) implies the following :

e v(l)=0.

@ v(1/x) = —v(x) for x € F*.

o If x,y € R, then x/y € R if and only if v(x) > v(y).
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This result generalises to polynomial rings and Laurent polynomial rings in
multiple variables.
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Let A\,u € C* and a, b, c € N with ged(a, b, c) = 1. The polynomial
Ax?yP + 11 z¢ is irreducible in C[x, y, z], because Ax + p is irreducible in C[x].




