TWO LEMMAS : one seemingly true and one seemingly false

Maria Chlouveraki

Université de Versailles - St Quentin

Lemma T

Let R be an integrally closed domain and let F be its field of fractions. Let \mathfrak{p} be a prime ideal of R. Then

 $(R[x])_{\mathfrak{p}R[x]} \cap F[x] = R_{\mathfrak{p}}[x].$

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

Lemma F

Let *R* be an integrally closed domain and $f(x) = \sum_{i} a_i x^i$, $g(x) = \sum_{j} b_j x^j$ be two polynomials in R[x]. If there exists an element $c \in R$ such that all the coefficients of f(x)g(x) belong to cR, then all the products a_ib_j belong to cR.

<ロ> (四) (四) (四) (四) (四) (四) (四)

An integral domain R is integrally closed if and only if it is the intersection of a family of valuation rings contained in its field of fractions.

An integral domain R is integrally closed if and only if it is the intersection of a family of valuation rings contained in its field of fractions.

Let *R* be an integral domain and let *F* be its field of fractions. We say that *R* is a valuation ring if there exists a totally ordered abelian group Γ and an application $v : F \to \Gamma \cup \{\infty\}$ which satisfies the following properties:

(V1)
$$v(xy) = v(x) + v(y)$$
 for $x, y \in F$.
(V2) $v(x + y) \ge \min(v(x), v(y))$ for $x, y \in F$
(V3) $v(0) = \infty$.
(V4) $\{x \in F \mid v(x) \ge 0\} = R$.

An integral domain R is integrally closed if and only if it is the intersection of a family of valuation rings contained in its field of fractions.

Let *R* be an integral domain and let *F* be its field of fractions. We say that *R* is a valuation ring if there exists a totally ordered abelian group Γ and an application $v : F \to \Gamma \cup \{\infty\}$ which satisfies the following properties:

(V1)
$$v(xy) = v(x) + v(y)$$
 for $x, y \in F$.
(V2) $v(x + y) \ge \min(v(x), v(y))$ for $x, y \in F$
(V3) $v(0) = \infty$.
(V4) $\{x \in F \mid v(x) \ge 0\} = R$.

In particular, if $v(x) \neq v(y)$, Property (V2) gives $v(x + y) = \min(v(x), v(y))$.

An integral domain R is integrally closed if and only if it is the intersection of a family of valuation rings contained in its field of fractions.

Let *R* be an integral domain and let *F* be its field of fractions. We say that *R* is a valuation ring if there exists a totally ordered abelian group Γ and an application $v : F \to \Gamma \cup \{\infty\}$ which satisfies the following properties:

(V1)
$$v(xy) = v(x) + v(y)$$
 for $x, y \in F$.
(V2) $v(x + y) \ge \min(v(x), v(y))$ for $x, y \in F$
(V3) $v(0) = \infty$.
(V4) $\{x \in F \mid v(x) \ge 0\} = R$.

In particular, if $v(x) \neq v(y)$, Property (V2) gives $v(x + y) = \min(v(x), v(y))$. Further, Property (V1) implies the following :

An integral domain R is integrally closed if and only if it is the intersection of a family of valuation rings contained in its field of fractions.

Let *R* be an integral domain and let *F* be its field of fractions. We say that *R* is a valuation ring if there exists a totally ordered abelian group Γ and an application $v : F \to \Gamma \cup \{\infty\}$ which satisfies the following properties:

(V1)
$$v(xy) = v(x) + v(y)$$
 for $x, y \in F$.
(V2) $v(x + y) \ge \min(v(x), v(y))$ for $x, y \in F$
(V3) $v(0) = \infty$.
(V4) $\{x \in F \mid v(x) \ge 0\} = R$.

In particular, if $v(x) \neq v(y)$, Property (V2) gives $v(x + y) = \min(v(x), v(y))$. Further, Property (V1) implies the following :

•
$$v(1) = 0$$
.

An integral domain R is integrally closed if and only if it is the intersection of a family of valuation rings contained in its field of fractions.

Let *R* be an integral domain and let *F* be its field of fractions. We say that *R* is a valuation ring if there exists a totally ordered abelian group Γ and an application $v : F \to \Gamma \cup \{\infty\}$ which satisfies the following properties:

(V1)
$$v(xy) = v(x) + v(y)$$
 for $x, y \in F$.
(V2) $v(x + y) \ge \min(v(x), v(y))$ for $x, y \in F$
(V3) $v(0) = \infty$.
(V4) $\{x \in F \mid v(x) \ge 0\} = R$.

In particular, if $v(x) \neq v(y)$, Property (V2) gives $v(x + y) = \min(v(x), v(y))$. Further, Property (V1) implies the following :

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

v(1) = 0.
v(1/x) = -v(x) for x ∈ F[×].

An integral domain R is integrally closed if and only if it is the intersection of a family of valuation rings contained in its field of fractions.

Let *R* be an integral domain and let *F* be its field of fractions. We say that *R* is a valuation ring if there exists a totally ordered abelian group Γ and an application $v : F \to \Gamma \cup \{\infty\}$ which satisfies the following properties:

(V1)
$$v(xy) = v(x) + v(y)$$
 for $x, y \in F$.
(V2) $v(x + y) \ge \min(v(x), v(y))$ for $x, y \in F$
(V3) $v(0) = \infty$.
(V4) $\{x \in F \mid v(x) \ge 0\} = R$.

In particular, if $v(x) \neq v(y)$, Property (V2) gives $v(x + y) = \min(v(x), v(y))$. Further, Property (V1) implies the following :

- v(1) = 0.
- v(1/x) = -v(x) for $x \in F^{\times}$.
- If $x, y \in R$, then $x/y \in R$ if and only if $v(x) \ge v(y)$.

Let *R* be an integrally closed domain and $f(x) = \sum_{i} a_i x^i$, $g(x) = \sum_{j} b_j x^j$ be two polynomials in R[x]. If there exists an element $c \in R$ such that all the coefficients of f(x)g(x) belong to cR, then all the products a_ib_j belong to cR.

Let *R* be an integrally closed domain and $f(x) = \sum_{i} a_i x^i$, $g(x) = \sum_{j} b_j x^j$ be two polynomials in R[x]. If there exists an element $c \in R$ such that all the coefficients of f(x)g(x) belong to cR, then all the products a_ib_j belong to cR.

Proof: It is enough to prove the result in the case where R is a valuation ring.

Let *R* be an integrally closed domain and $f(x) = \sum_{i} a_i x^i$, $g(x) = \sum_{j} b_j x^j$ be two polynomials in R[x]. If there exists an element $c \in R$ such that all the coefficients of f(x)g(x) belong to cR, then all the products a_ib_j belong to cR.

Proof: It is enough to prove the result in the case where R is a valuation ring. Let $\kappa := \min_i(v(a_i))$ and $\lambda := \min_j(v(b_j))$.

Let *R* be an integrally closed domain and $f(x) = \sum_{i} a_i x^i$, $g(x) = \sum_{j} b_j x^j$ be two polynomials in R[x]. If there exists an element $c \in R$ such that all the coefficients of f(x)g(x) belong to *cR*, then all the products a_ib_j belong to *cR*.

Proof: It is enough to prove the result in the case where *R* is a valuation ring. Let $\kappa := \min_i(v(a_i))$ and $\lambda := \min_j(v(b_j))$. Then $\kappa + \lambda = \min_{i,j}(v(a_ib_j))$.

Let *R* be an integrally closed domain and $f(x) = \sum_{i} a_i x^i$, $g(x) = \sum_{j} b_j x^j$ be two polynomials in R[x]. If there exists an element $c \in R$ such that all the coefficients of f(x)g(x) belong to *cR*, then all the products a_ib_j belong to *cR*.

Proof: It is enough to prove the result in the case where *R* is a valuation ring. Let $\kappa := \min_i(v(a_i))$ and $\lambda := \min_j(v(b_j))$. Then $\kappa + \lambda = \min_{i,j}(v(a_ib_j))$. We will show that $\kappa + \lambda \ge v(c)$ and thus *c* divides all the products a_ib_i .

Let *R* be an integrally closed domain and $f(x) = \sum_{i} a_i x^i$, $g(x) = \sum_{j} b_j x^j$ be two polynomials in R[x]. If there exists an element $c \in R$ such that all the coefficients of f(x)g(x) belong to *cR*, then all the products a_ib_j belong to *cR*.

Proof: It is enough to prove the result in the case where *R* is a valuation ring. Let $\kappa := \min_i(v(a_i))$ and $\lambda := \min_j(v(b_j))$. Then $\kappa + \lambda = \min_{i,j}(v(a_ib_j))$. We will show that $\kappa + \lambda \ge v(c)$ and thus *c* divides all the products a_ib_j . Let $a_{i_1}, a_{i_2}, \ldots, a_{i_r}$ with $i_1 < i_2 < \ldots < i_r$ be all the elements among the a_i with valuation equal to κ .

Let *R* be an integrally closed domain and $f(x) = \sum_{i} a_i x^i$, $g(x) = \sum_{j} b_j x^j$ be two polynomials in R[x]. If there exists an element $c \in R$ such that all the coefficients of f(x)g(x) belong to *cR*, then all the products a_ib_j belong to *cR*.

Proof: It is enough to prove the result in the case where *R* is a valuation ring. Let $\kappa := \min_i(v(a_i))$ and $\lambda := \min_j(v(b_j))$. Then $\kappa + \lambda = \min_{i,j}(v(a_ib_j))$. We will show that $\kappa + \lambda \ge v(c)$ and thus *c* divides all the products a_ib_j . Let $a_{i_1}, a_{i_2}, \ldots, a_{i_r}$ with $i_1 < i_2 < \ldots < i_r$ be all the elements among the a_i with valuation equal to κ . Respectively, let $b_{j_1}, b_{j_2}, \ldots, b_{j_s}$ with $j_1 < j_2 < \ldots < j_s$ be all the elements among the b_i with valuation equal to λ .

Let *R* be an integrally closed domain and $f(x) = \sum_{i} a_i x^i$, $g(x) = \sum_{j} b_j x^j$ be two polynomials in R[x]. If there exists an element $c \in R$ such that all the coefficients of f(x)g(x) belong to *cR*, then all the products a_ib_j belong to *cR*.

Proof: It is enough to prove the result in the case where *R* is a valuation ring. Let $\kappa := \min_i(v(a_i))$ and $\lambda := \min_j(v(b_j))$. Then $\kappa + \lambda = \min_{i,j}(v(a_ib_j))$. We will show that $\kappa + \lambda \ge v(c)$ and thus *c* divides all the products a_ib_j . Let $a_{i_1}, a_{i_2}, \ldots, a_{i_r}$ with $i_1 < i_2 < \ldots < i_r$ be all the elements among the a_i with valuation equal to κ . Respectively, let $b_{j_1}, b_{j_2}, \ldots, b_{j_s}$ with $j_1 < j_2 < \ldots < j_s$ be all the elements among the b_j with valuation equal to λ . We have that $i_1 + j_1 < i_m + j_n$, $\forall (m, n) \neq (1, 1)$.

Let *R* be an integrally closed domain and $f(x) = \sum_{i} a_i x^i$, $g(x) = \sum_{j} b_j x^j$ be two polynomials in R[x]. If there exists an element $c \in R$ such that all the coefficients of f(x)g(x) belong to *cR*, then all the products a_ib_j belong to *cR*.

Proof: It is enough to prove the result in the case where *R* is a valuation ring. Let $\kappa := \min_i(v(a_i))$ and $\lambda := \min_j(v(b_j))$. Then $\kappa + \lambda = \min_{i,j}(v(a_ib_j))$. We will show that $\kappa + \lambda \ge v(c)$ and thus *c* divides all the products a_ib_j . Let $a_{i_1}, a_{i_2}, \ldots, a_{i_r}$ with $i_1 < i_2 < \ldots < i_r$ be all the elements among the a_i with valuation equal to κ . Respectively, let $b_{j_1}, b_{j_2}, \ldots, b_{j_s}$ with $j_1 < j_2 < \ldots < j_s$ be all the elements among the b_j with valuation equal to λ . We have that $i_1 + j_1 < i_m + j_n$, $\forall (m, n) \neq (1, 1)$.

Therefore, the coefficient $c_{i_1+j_1}$ of $x^{i_1+j_1}$ in f(x)g(x) is of the form

$$c_{i_1+j_1} = a_{i_1}b_{j_1} + \sum (\text{terms with valuation} > \kappa + \lambda).$$

Let *R* be an integrally closed domain and $f(x) = \sum_{i} a_i x^i$, $g(x) = \sum_{j} b_j x^j$ be two polynomials in R[x]. If there exists an element $c \in R$ such that all the coefficients of f(x)g(x) belong to *cR*, then all the products a_ib_j belong to *cR*.

Proof: It is enough to prove the result in the case where *R* is a valuation ring. Let $\kappa := \min_i(v(a_i))$ and $\lambda := \min_j(v(b_j))$. Then $\kappa + \lambda = \min_{i,j}(v(a_ib_j))$. We will show that $\kappa + \lambda \ge v(c)$ and thus *c* divides all the products a_ib_j . Let $a_{i_1}, a_{i_2}, \ldots, a_{i_r}$ with $i_1 < i_2 < \ldots < i_r$ be all the elements among the a_i with valuation equal to κ . Respectively, let $b_{j_1}, b_{j_2}, \ldots, b_{j_s}$ with $j_1 < j_2 < \ldots < j_s$ be all the elements among the b_j with valuation equal to λ . We have that $i_1 + j_1 < i_m + j_n$, $\forall (m, n) \neq (1, 1)$. Therefore, the coefficient $c_{i_1+j_1}$ of $x^{i_1+j_1}$ in f(x)g(x) is of the form

$$c_{i_1+j_1} = a_{i_1}b_{j_1} + \sum (ext{terms with valuation} > \kappa + \lambda).$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Now, $v(\sum (\text{terms with valuation} > \kappa + \lambda)) > \kappa + \lambda = v(a_{i_1}b_{j_1})$,

Let *R* be an integrally closed domain and $f(x) = \sum_{i} a_i x^i$, $g(x) = \sum_{j} b_j x^j$ be two polynomials in R[x]. If there exists an element $c \in R$ such that all the coefficients of f(x)g(x) belong to *cR*, then all the products a_ib_j belong to *cR*.

Proof: It is enough to prove the result in the case where *R* is a valuation ring. Let $\kappa := \min_i(v(a_i))$ and $\lambda := \min_j(v(b_j))$. Then $\kappa + \lambda = \min_{i,j}(v(a_ib_j))$. We will show that $\kappa + \lambda \ge v(c)$ and thus *c* divides all the products a_ib_j . Let $a_{i_1}, a_{i_2}, \ldots, a_{i_r}$ with $i_1 < i_2 < \ldots < i_r$ be all the elements among the a_i with valuation equal to κ . Respectively, let $b_{j_1}, b_{j_2}, \ldots, b_{j_s}$ with $j_1 < j_2 < \ldots < j_s$ be all the elements among the b_j with valuation equal to λ . We have that $i_1 + j_1 < i_m + j_n$, $\forall (m, n) \neq (1, 1)$. Therefore, the coefficient $c_{i_1+j_1}$ of $x^{i_1+j_1}$ in f(x)g(x) is of the form

$$c_{i_1+j_1} = a_{i_1}b_{j_1} + \sum (ext{terms with valuation} > \kappa + \lambda).$$

Now, $\nu(\sum(\text{terms with valuation} > \kappa + \lambda)) > \kappa + \lambda = \nu(a_{i_1}b_{j_1})$, whence

 $v(c_{i_1+j_1}) = \min(v(a_{i_1}b_{j_1}), v(\sum(\text{terms with valuation} > \kappa + \lambda))) = \kappa + \lambda.$

Let *R* be an integrally closed domain and $f(x) = \sum_{i} a_i x^i$, $g(x) = \sum_{j} b_j x^j$ be two polynomials in R[x]. If there exists an element $c \in R$ such that all the coefficients of f(x)g(x) belong to *cR*, then all the products a_ib_j belong to *cR*.

Proof: It is enough to prove the result in the case where *R* is a valuation ring. Let $\kappa := \min_i(v(a_i))$ and $\lambda := \min_j(v(b_j))$. Then $\kappa + \lambda = \min_{i,j}(v(a_ib_j))$. We will show that $\kappa + \lambda \ge v(c)$ and thus *c* divides all the products a_ib_j . Let $a_{i_1}, a_{i_2}, \ldots, a_{i_r}$ with $i_1 < i_2 < \ldots < i_r$ be all the elements among the a_i with valuation equal to κ . Respectively, let $b_{j_1}, b_{j_2}, \ldots, b_{j_s}$ with $j_1 < j_2 < \ldots < j_s$ be all the elements among the b_j with valuation equal to λ . We have that $i_1 + j_1 < i_m + j_n$, $\forall (m, n) \neq (1, 1)$. Therefore, the coefficient $c_{i_1+j_1}$ of $x^{i_1+j_1}$ in f(x)g(x) is of the form

$$c_{i_1+j_1} = a_{i_1}b_{j_1} + \sum (ext{terms with valuation} > \kappa + \lambda).$$

Now, $\nu(\sum(\text{terms with valuation} > \kappa + \lambda)) > \kappa + \lambda = \nu(a_{i_1}b_{j_1})$, whence

$$v(c_{i_1+j_1}) = \min(v(a_{i_1}b_{j_1}), v(\sum(\text{terms with valuation} > \kappa + \lambda))) = \kappa + \lambda.$$

Now, since all the coefficients of f(x)g(x) are divisible by c, we have that $v(c_{i_1+j_1}) \ge v(c)$, as desired.

Let R be an integrally closed domain and let F be its field of fractions. Let \mathfrak{p} be a prime ideal of R. Then

 $(R[x])_{\mathfrak{p}R[x]} \cap F[x] = R_{\mathfrak{p}}[x].$

Let R be an integrally closed domain and let F be its field of fractions. Let \mathfrak{p} be a prime ideal of R. Then

 $(R[x])_{\mathfrak{p}R[x]} \cap F[x] = R_{\mathfrak{p}}[x].$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq (R[x])_{\mathfrak{p}R[x]} \cap F[x]$ is obvious.

Let R be an integrally closed domain and let F be its field of fractions. Let \mathfrak{p} be a prime ideal of R. Then

 $(R[x])_{\mathfrak{p}R[x]} \cap F[x] = R_{\mathfrak{p}}[x].$

Proof: The inclusion $R_p[x] \subseteq (R[x])_{pR[x]} \cap F[x]$ is obvious. Now, let f(x) be an element of F[x]. Then f(x) can be written in the form $r(x)/\xi$, where $r(x) \in R[x]$ and $\xi \in R$.

Let R be an integrally closed domain and let F be its field of fractions. Let \mathfrak{p} be a prime ideal of R. Then

 $(R[x])_{\mathfrak{p}R[x]} \cap F[x] = R_{\mathfrak{p}}[x].$

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq (R[x])_{\mathfrak{p}R[x]} \cap F[x]$ is obvious. Now, let f(x) be an element of F[x]. Then f(x) can be written in the form $r(x)/\xi$, where $r(x) \in R[x]$ and $\xi \in R$. If, moreover, f(x) belongs to $(R[x])_{\mathfrak{p}R[x]}$, then there exist $s(x), t(x) \in R[x]$ with $t(x) \notin \mathfrak{p}R[x]$ such that f(x) = s(x)/t(x).

Let *R* be an integrally closed domain and let *F* be its field of fractions. Let \mathfrak{p} be a prime ideal of *R*. Then

$$(R[x])_{\mathfrak{p}R[x]} \cap F[x] = R_{\mathfrak{p}}[x].$$

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq (R[x])_{\mathfrak{p}R[x]} \cap F[x]$ is obvious. Now, let f(x) be an element of F[x]. Then f(x) can be written in the form $r(x)/\xi$, where $r(x) \in R[x]$ and $\xi \in R$. If, moreover, f(x) belongs to $(R[x])_{\mathfrak{p}R[x]}$, then there exist $s(x), t(x) \in R[x]$ with $t(x) \notin \mathfrak{p}R[x]$ such that f(x) = s(x)/t(x). Thus, we have

$$f(x)=\frac{r(x)}{\xi}=\frac{s(x)}{t(x)}.$$

Let *R* be an integrally closed domain and let *F* be its field of fractions. Let \mathfrak{p} be a prime ideal of *R*. Then

$$(R[x])_{\mathfrak{p}R[x]} \cap F[x] = R_{\mathfrak{p}}[x].$$

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq (R[x])_{\mathfrak{p}R[x]} \cap F[x]$ is obvious. Now, let f(x) be an element of F[x]. Then f(x) can be written in the form $r(x)/\xi$, where $r(x) \in R[x]$ and $\xi \in R$. If, moreover, f(x) belongs to $(R[x])_{\mathfrak{p}R[x]}$, then there exist $s(x), t(x) \in R[x]$ with $t(x) \notin \mathfrak{p}R[x]$ such that f(x) = s(x)/t(x). Thus, we have

$$f(x)=\frac{r(x)}{\xi}=\frac{s(x)}{t(x)}.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

All the coefficients of the product r(x)t(x) belong to ξR .

Let *R* be an integrally closed domain and let *F* be its field of fractions. Let \mathfrak{p} be a prime ideal of *R*. Then

$$(R[x])_{\mathfrak{p}R[x]} \cap F[x] = R_{\mathfrak{p}}[x].$$

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq (R[x])_{\mathfrak{p}R[x]} \cap F[x]$ is obvious. Now, let f(x) be an element of F[x]. Then f(x) can be written in the form $r(x)/\xi$, where $r(x) \in R[x]$ and $\xi \in R$. If, moreover, f(x) belongs to $(R[x])_{\mathfrak{p}R[x]}$, then there exist $s(x), t(x) \in R[x]$ with $t(x) \notin \mathfrak{p}R[x]$ such that f(x) = s(x)/t(x). Thus, we have

$$f(x) = \frac{r(x)}{\xi} = \frac{s(x)}{t(x)}.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

All the coefficients of the product r(x)t(x) belong to ξR . Due to Lemma F, if $r(x) = \sum_{i} a_{i}x^{i}$ and $t(x) = \sum_{j} b_{j}x^{j}$, then all the products $a_{i}b_{j}$ belong to ξR .

Let *R* be an integrally closed domain and let *F* be its field of fractions. Let \mathfrak{p} be a prime ideal of *R*. Then

$$(R[x])_{\mathfrak{p}R[x]} \cap F[x] = R_{\mathfrak{p}}[x].$$

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq (R[x])_{\mathfrak{p}R[x]} \cap F[x]$ is obvious. Now, let f(x) be an element of F[x]. Then f(x) can be written in the form $r(x)/\xi$, where $r(x) \in R[x]$ and $\xi \in R$. If, moreover, f(x) belongs to $(R[x])_{\mathfrak{p}R[x]}$, then there exist $s(x), t(x) \in R[x]$ with $t(x) \notin \mathfrak{p}R[x]$ such that f(x) = s(x)/t(x). Thus, we have

$$f(x) = \frac{r(x)}{\xi} = \frac{s(x)}{t(x)}.$$

All the coefficients of the product r(x)t(x) belong to ξR . Due to Lemma F, if $r(x) = \sum_{i} a_{i}x^{i}$ and $t(x) = \sum_{j} b_{j}x^{j}$, then all the products $a_{i}b_{j}$ belong to ξR . Now, the fact that $t(x) \notin \mathfrak{p}R[x]$ implies there exists j_{0} such that $b_{j_{0}} \notin \mathfrak{p}$.

Let *R* be an integrally closed domain and let *F* be its field of fractions. Let \mathfrak{p} be a prime ideal of *R*. Then

$$(R[x])_{\mathfrak{p}R[x]} \cap F[x] = R_{\mathfrak{p}}[x].$$

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq (R[x])_{\mathfrak{p}R[x]} \cap F[x]$ is obvious. Now, let f(x) be an element of F[x]. Then f(x) can be written in the form $r(x)/\xi$, where $r(x) \in R[x]$ and $\xi \in R$. If, moreover, f(x) belongs to $(R[x])_{\mathfrak{p}R[x]}$, then there exist $s(x), t(x) \in R[x]$ with $t(x) \notin \mathfrak{p}R[x]$ such that f(x) = s(x)/t(x). Thus, we have

$$f(x) = \frac{r(x)}{\xi} = \frac{s(x)}{t(x)}.$$

All the coefficients of the product r(x)t(x) belong to ξR . Due to Lemma F, if $r(x) = \sum_i a_i x^i$ and $t(x) = \sum_j b_j x^j$, then all the products $a_i b_j$ belong to ξR . Now, the fact that $t(x) \notin pR[x]$ implies there exists j_0 such that $b_{j_0} \notin p$. Since $a_i b_{j_0} \in \xi R$, for all *i*, we deduce that $b_{j_0} f(x) = (b_{j_0} r(x))/\xi \in R[x]$ and so all the coefficients of f(x) belong to R_p .

Let *R* be an integrally closed domain and let *F* be its field of fractions. Let \mathfrak{p} be a prime ideal of *R*. Then

$$(R[x])_{\mathfrak{p}R[x]} \cap F[x] = R_{\mathfrak{p}}[x].$$

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq (R[x])_{\mathfrak{p}R[x]} \cap F[x]$ is obvious. Now, let f(x) be an element of F[x]. Then f(x) can be written in the form $r(x)/\xi$, where $r(x) \in R[x]$ and $\xi \in R$. If, moreover, f(x) belongs to $(R[x])_{\mathfrak{p}R[x]}$, then there exist $s(x), t(x) \in R[x]$ with $t(x) \notin \mathfrak{p}R[x]$ such that f(x) = s(x)/t(x). Thus, we have

$$f(x) = \frac{r(x)}{\xi} = \frac{s(x)}{t(x)}.$$

All the coefficients of the product r(x)t(x) belong to ξR . Due to Lemma F, if $r(x) = \sum_i a_i x^i$ and $t(x) = \sum_j b_j x^j$, then all the products $a_i b_j$ belong to ξR . Now, the fact that $t(x) \notin pR[x]$ implies there exists j_0 such that $b_{j_0} \notin p$. Since $a_i b_{j_0} \in \xi R$, for all *i*, we deduce that $b_{j_0} f(x) = (b_{j_0} r(x))/\xi \in R[x]$ and so all the coefficients of f(x) belong to R_p .

This result generalises to polynomial rings and Laurent polynomial rings in multiple variables.

Let *R* be an integrally closed domain and let *F* be its field of fractions. Let s(x) and t(x) be two elements of R[x] such that $s(x)/t(x) \in F[x]$. If one of the coefficients of t(x) is a unit in *R*, then $s(x)/t(x) \in R[x]$.

Let R be an integrally closed domain and let F be its field of fractions. Let s(x) and t(x) be two elements of R[x] such that $s(x)/t(x) \in F[x]$. If one of the coefficients of t(x) is a unit in R, then $s(x)/t(x) \in R[x]$.

Proof: Since $s(x)/t(x) \in F[x]$, there exist $r(x) \in R[x]$ and $\xi \in R$ such that

$$\frac{s(x)}{t(x)} = \frac{r(x)}{\xi}$$

Let R be an integrally closed domain and let F be its field of fractions. Let s(x) and t(x) be two elements of R[x] such that $s(x)/t(x) \in F[x]$. If one of the coefficients of t(x) is a unit in R, then $s(x)/t(x) \in R[x]$.

Proof: Since $s(x)/t(x) \in F[x]$, there exist $r(x) \in R[x]$ and $\xi \in R$ such that

$$\frac{s(x)}{t(x)} = \frac{r(x)}{\xi}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

All the coefficients of the product r(x)t(x) belong to ξR .

Let R be an integrally closed domain and let F be its field of fractions. Let s(x) and t(x) be two elements of R[x] such that $s(x)/t(x) \in F[x]$. If one of the coefficients of t(x) is a unit in R, then $s(x)/t(x) \in R[x]$.

Proof: Since $s(x)/t(x) \in F[x]$, there exist $r(x) \in R[x]$ and $\xi \in R$ such that

$$\frac{s(x)}{t(x)} = \frac{r(x)}{\xi}$$

All the coefficients of the product r(x)t(x) belong to ξR . Due to Lemma F, if $r(x) = \sum_{i} a_{i}x^{i}$ and $t(x) = \sum_{i} b_{j}x^{j}$, then all the products $a_{i}b_{j}$ belong to ξR .

Let R be an integrally closed domain and let F be its field of fractions. Let s(x) and t(x) be two elements of R[x] such that $s(x)/t(x) \in F[x]$. If one of the coefficients of t(x) is a unit in R, then $s(x)/t(x) \in R[x]$.

Proof: Since $s(x)/t(x) \in F[x]$, there exist $r(x) \in R[x]$ and $\xi \in R$ such that

$$\frac{s(x)}{t(x)} = \frac{r(x)}{\xi}$$

All the coefficients of the product r(x)t(x) belong to ξR . Due to Lemma F, if $r(x) = \sum_{i} a_i x^i$ and $t(x) = \sum_{j} b_j x^j$, then all the products $a_i b_j$ belong to ξR . By assumption, there exists j_0 such that b_{j_0} is a unit in R.

Let *R* be an integrally closed domain and let *F* be its field of fractions. Let s(x) and t(x) be two elements of R[x] such that $s(x)/t(x) \in F[x]$. If one of the coefficients of t(x) is a unit in *R*, then $s(x)/t(x) \in R[x]$.

Proof: Since $s(x)/t(x) \in F[x]$, there exist $r(x) \in R[x]$ and $\xi \in R$ such that

$$\frac{s(x)}{t(x)} = \frac{r(x)}{\xi}$$

All the coefficients of the product r(x)t(x) belong to ξR . Due to Lemma F, if $r(x) = \sum_{i} a_i x^i$ and $t(x) = \sum_{j} b_j x^j$, then all the products $a_i b_j$ belong to ξR . By assumption, there exists j_0 such that b_{j_0} is a unit in R. Since $a_i b_{j_0} \in \xi R$ for all i, we deduce that $a_i \in \xi R$ for all i, whence $r(x)/\xi \in R[x]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let *R* be an integrally closed domain and let *F* be its field of fractions. Let s(x) and t(x) be two elements of R[x] such that $s(x)/t(x) \in F[x]$. If one of the coefficients of t(x) is a unit in *R*, then $s(x)/t(x) \in R[x]$.

Proof: Since $s(x)/t(x) \in F[x]$, there exist $r(x) \in R[x]$ and $\xi \in R$ such that

$$\frac{s(x)}{t(x)} = \frac{r(x)}{\xi}$$

All the coefficients of the product r(x)t(x) belong to ξR . Due to Lemma F, if $r(x) = \sum_{i} a_i x^i$ and $t(x) = \sum_{j} b_j x^j$, then all the products $a_i b_j$ belong to ξR . By assumption, there exists j_0 such that b_{j_0} is a unit in R. Since $a_i b_{j_0} \in \xi R$ for all i, we deduce that $a_i \in \xi R$ for all i, whence $r(x)/\xi \in R[x]$.

This result generalises to polynomial rings and Laurent polynomial rings in multiple variables.

Preview

Let $\lambda, \mu \in \mathbb{C}^{\times}$ and $a, b, c \in \mathbb{N}$ with gcd(a, b, c) = 1. The polynomial $\lambda x^a y^b + \mu z^c$ is irreducible in $\mathbb{C}[x, y, z]$, because $\lambda x + \mu$ is irreducible in $\mathbb{C}[x]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで