TWO LEMMAS : one seemingly true and one seemingly false

Maria Chlouveraki

Université de Versailles - St Quentin

Lemma T

Let R be an integrally closed domain and let F be its field of fractions. Let \mathfrak{p} be a prime ideal of R. Then

$$
(R[x])_{\mathfrak{p} R[x]} \cap F[x]=R_{\mathfrak{p}}[x] .
$$

Lemma F

Let R be an integrally closed domain and $f(x)=\sum_{i} a_{i} x^{i}, g(x)=\sum_{j} b_{j} x^{j}$ be two polynomials in $R[x]$ ．If there exists an element $c \in R$ such that all the coefficients of $f(x) g(x)$ belong to $c R$ ，then all the products $a_{i} b_{j}$ belong to $c R$ ．

Fact

An integral domain R is integrally closed if and only if it is the intersection of a family of valuation rings contained in its field of fractions.

Fact

An integral domain R is integrally closed if and only if it is the intersection of a family of valuation rings contained in its field of fractions.

Let R be an integral domain and let F be its field of fractions. We say that R is a valuation ring if there exists a totally ordered abelian group Γ and an application $v: F \rightarrow \Gamma \cup\{\infty\}$ which satisfies the following properties:
(V1) $v(x y)=v(x)+v(y)$ for $x, y \in F$.
(V2) $v(x+y) \geqslant \min (v(x), v(y))$ for $x, y \in F$.
(V3) $v(0)=\infty$.
(V4) $\{x \in F \mid v(x) \geqslant 0\}=R$.

Fact

An integral domain R is integrally closed if and only if it is the intersection of a family of valuation rings contained in its field of fractions.

Let R be an integral domain and let F be its field of fractions. We say that R is a valuation ring if there exists a totally ordered abelian group Γ and an application $v: F \rightarrow \Gamma \cup\{\infty\}$ which satisfies the following properties:
(V1) $v(x y)=v(x)+v(y)$ for $x, y \in F$.
(V2) $v(x+y) \geqslant \min (v(x), v(y))$ for $x, y \in F$.
(V3) $v(0)=\infty$.
(V4) $\{x \in F \mid v(x) \geqslant 0\}=R$.
In particular, if $v(x) \neq v(y)$, Property (V2) gives $v(x+y)=\min (v(x), v(y))$.

Fact

An integral domain R is integrally closed if and only if it is the intersection of a family of valuation rings contained in its field of fractions.

Let R be an integral domain and let F be its field of fractions. We say that R is a valuation ring if there exists a totally ordered abelian group Γ and an application $v: F \rightarrow \Gamma \cup\{\infty\}$ which satisfies the following properties:
(V1) $v(x y)=v(x)+v(y)$ for $x, y \in F$.
(V2) $v(x+y) \geqslant \min (v(x), v(y))$ for $x, y \in F$.
(V3) $v(0)=\infty$.
(V4) $\{x \in F \mid v(x) \geqslant 0\}=R$.
In particular, if $v(x) \neq v(y)$, Property (V2) gives $v(x+y)=\min (v(x), v(y))$. Further, Property (V1) implies the following :

Fact

An integral domain R is integrally closed if and only if it is the intersection of a family of valuation rings contained in its field of fractions.

Let R be an integral domain and let F be its field of fractions. We say that R is a valuation ring if there exists a totally ordered abelian group Γ and an application $v: F \rightarrow \Gamma \cup\{\infty\}$ which satisfies the following properties:
(V1) $v(x y)=v(x)+v(y)$ for $x, y \in F$.
(V2) $v(x+y) \geqslant \min (v(x), v(y))$ for $x, y \in F$.
(V3) $v(0)=\infty$.
(V4) $\{x \in F \mid v(x) \geqslant 0\}=R$.
In particular, if $v(x) \neq v(y)$, Property (V2) gives $v(x+y)=\min (v(x), v(y))$. Further, Property (V1) implies the following :

- $v(1)=0$.

Fact

An integral domain R is integrally closed if and only if it is the intersection of a family of valuation rings contained in its field of fractions.

Let R be an integral domain and let F be its field of fractions. We say that R is a valuation ring if there exists a totally ordered abelian group Γ and an application $v: F \rightarrow \Gamma \cup\{\infty\}$ which satisfies the following properties:
(V1) $v(x y)=v(x)+v(y)$ for $x, y \in F$.
(V2) $v(x+y) \geqslant \min (v(x), v(y))$ for $x, y \in F$.
(V3) $v(0)=\infty$.
(V4) $\{x \in F \mid v(x) \geqslant 0\}=R$.
In particular, if $v(x) \neq v(y)$, Property (V2) gives $v(x+y)=\min (v(x), v(y))$.
Further, Property (V1) implies the following :

- $v(1)=0$.
- $v(1 / x)=-v(x)$ for $x \in F^{\times}$.

Fact

An integral domain R is integrally closed if and only if it is the intersection of a family of valuation rings contained in its field of fractions.

Let R be an integral domain and let F be its field of fractions. We say that R is a valuation ring if there exists a totally ordered abelian group Γ and an application $v: F \rightarrow \Gamma \cup\{\infty\}$ which satisfies the following properties:
(V1) $v(x y)=v(x)+v(y)$ for $x, y \in F$.
(V2) $v(x+y) \geqslant \min (v(x), v(y))$ for $x, y \in F$.
(V3) $v(0)=\infty$.
(V4) $\{x \in F \mid v(x) \geqslant 0\}=R$.
In particular, if $v(x) \neq v(y)$, Property (V2) gives $v(x+y)=\min (v(x), v(y))$. Further, Property (V1) implies the following :

- $v(1)=0$.
- $v(1 / x)=-v(x)$ for $x \in F^{x}$.
- If $x, y \in R$, then $x / y \in R$ if and only if $v(x) \geqslant v(y)$.

Lemma F（Bourbaki）

Let R be an integrally closed domain and $f(x)=\sum_{i} a_{i} x^{i}, g(x)=\sum_{j} b_{j} x^{j}$ be two polynomials in $R[x]$ ．If there exists an element $c \in R$ such that all the coefficients of $f(x) g(x)$ belong to $c R$ ，then all the products $a_{i} b_{j}$ belong to $c R$ ．

Lemma F (Bourbaki)

Let R be an integrally closed domain and $f(x)=\sum_{i} a_{i} x^{i}, g(x)=\sum_{j} b_{j} x^{j}$ be two polynomials in $R[x]$. If there exists an element $c \in R$ such that all the coefficients of $f(x) g(x)$ belong to $c R$, then all the products $a_{i} b_{j}$ belong to $c R$.

Proof: It is enough to prove the result in the case where R is a valuation ring.

Lemma F (Bourbaki)

Let R be an integrally closed domain and $f(x)=\sum_{i} a_{i} x^{i}, g(x)=\sum_{j} b_{j} x^{j}$ be two polynomials in $R[x]$. If there exists an element $c \in R$ such that all the coefficients of $f(x) g(x)$ belong to $c R$, then all the products $a_{i} b_{j}$ belong to $c R$.

Proof: It is enough to prove the result in the case where R is a valuation ring. Let $\kappa:=\min _{i}\left(v\left(a_{i}\right)\right)$ and $\lambda:=\min _{j}\left(v\left(b_{j}\right)\right)$.

Lemma F（Bourbaki）

Let R be an integrally closed domain and $f(x)=\sum_{i} a_{i} x^{i}, g(x)=\sum_{j} b_{j} x^{j}$ be two polynomials in $R[x]$ ．If there exists an element $c \in R$ such that all the coefficients of $f(x) g(x)$ belong to $c R$ ，then all the products $a_{i} b_{j}$ belong to $c R$ ．

Proof：It is enough to prove the result in the case where R is a valuation ring． Let $\kappa:=\min _{i}\left(v\left(a_{i}\right)\right)$ and $\lambda:=\min _{j}\left(v\left(b_{j}\right)\right)$ ．Then $\kappa+\lambda=\min _{i, j}\left(v\left(a_{i} b_{j}\right)\right)$ ．

Lemma F (Bourbaki)

Let R be an integrally closed domain and $f(x)=\sum_{i} a_{i} x^{i}, g(x)=\sum_{j} b_{j} x^{j}$ be two polynomials in $R[x]$. If there exists an element $c \in R$ such that all the coefficients of $f(x) g(x)$ belong to $c R$, then all the products $a_{i} b_{j}$ belong to $c R$.

Proof: It is enough to prove the result in the case where R is a valuation ring. Let $\kappa:=\min _{i}\left(v\left(a_{i}\right)\right)$ and $\lambda:=\min _{j}\left(v\left(b_{j}\right)\right)$. Then $\kappa+\lambda=\min _{i, j}\left(v\left(a_{i} b_{j}\right)\right)$. We will show that $\kappa+\lambda \geqslant v(c)$ and thus c divides all the products $a_{i} b_{j}$.

Lemma F (Bourbaki)

Let R be an integrally closed domain and $f(x)=\sum_{i} a_{i} x^{i}, g(x)=\sum_{j} b_{j} x^{j}$ be two polynomials in $R[x]$. If there exists an element $c \in R$ such that all the coefficients of $f(x) g(x)$ belong to $c R$, then all the products $a_{i} b_{j}$ belong to $c R$.

Proof: It is enough to prove the result in the case where R is a valuation ring. Let $\kappa:=\min _{i}\left(v\left(a_{i}\right)\right)$ and $\lambda:=\min _{j}\left(v\left(b_{j}\right)\right)$. Then $\kappa+\lambda=\min _{i, j}\left(v\left(a_{i} b_{j}\right)\right)$. We will show that $\kappa+\lambda \geqslant v(c)$ and thus c divides all the products $a_{i} b_{j}$. Let $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{r}}$ with $i_{1}<i_{2}<\ldots<i_{r}$ be all the elements among the a_{i} with valuation equal to κ.

Lemma F (Bourbaki)

Let R be an integrally closed domain and $f(x)=\sum_{i} a_{i} x^{i}, g(x)=\sum_{j} b_{j} x^{j}$ be two polynomials in $R[x]$. If there exists an element $c \in R$ such that all the coefficients of $f(x) g(x)$ belong to $c R$, then all the products $a_{i} b_{j}$ belong to $c R$.

Proof: It is enough to prove the result in the case where R is a valuation ring. Let $\kappa:=\min _{i}\left(v\left(a_{i}\right)\right)$ and $\lambda:=\min _{j}\left(v\left(b_{j}\right)\right)$. Then $\kappa+\lambda=\min _{i, j}\left(v\left(a_{i} b_{j}\right)\right)$. We will show that $\kappa+\lambda \geqslant v(c)$ and thus c divides all the products $a_{i} b_{j}$. Let $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{r}}$ with $i_{1}<i_{2}<\ldots<i_{r}$ be all the elements among the a_{i} with valuation equal to κ. Respectively, let $b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{s}}$ with $j_{1}<j_{2}<\ldots<j_{s}$ be all the elements among the b_{j} with valuation equal to λ.

Lemma F (Bourbaki)

Let R be an integrally closed domain and $f(x)=\sum_{i} a_{i} x^{i}, g(x)=\sum_{j} b_{j} x^{j}$ be two polynomials in $R[x]$. If there exists an element $c \in R$ such that all the coefficients of $f(x) g(x)$ belong to $c R$, then all the products $a_{i} b_{j}$ belong to $c R$.

Proof: It is enough to prove the result in the case where R is a valuation ring. Let $\kappa:=\min _{i}\left(v\left(a_{i}\right)\right)$ and $\lambda:=\min _{j}\left(v\left(b_{j}\right)\right)$. Then $\kappa+\lambda=\min _{i, j}\left(v\left(a_{i} b_{j}\right)\right)$. We will show that $\kappa+\lambda \geqslant v(c)$ and thus c divides all the products $a_{i} b_{j}$.
Let $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{r}}$ with $i_{1}<i_{2}<\ldots<i_{r}$ be all the elements among the a_{i} with valuation equal to κ. Respectively, let $b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{s}}$ with $j_{1}<j_{2}<\ldots<j_{s}$ be all the elements among the b_{j} with valuation equal to λ.
We have that $i_{1}+j_{1}<i_{m}+j_{n}, \forall(m, n) \neq(1,1)$.

Lemma F (Bourbaki)

Let R be an integrally closed domain and $f(x)=\sum_{i} a_{i} x^{i}, g(x)=\sum_{j} b_{j} x^{j}$ be two polynomials in $R[x]$. If there exists an element $c \in R$ such that all the coefficients of $f(x) g(x)$ belong to $c R$, then all the products $a_{i} b_{j}$ belong to $c R$.

Proof: It is enough to prove the result in the case where R is a valuation ring. Let $\kappa:=\min _{i}\left(v\left(a_{i}\right)\right)$ and $\lambda:=\min _{j}\left(v\left(b_{j}\right)\right)$. Then $\kappa+\lambda=\min _{i, j}\left(v\left(a_{i} b_{j}\right)\right)$. We will show that $\kappa+\lambda \geqslant v(c)$ and thus c divides all the products $a_{i} b_{j}$. Let $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{r}}$ with $i_{1}<i_{2}<\ldots<i_{r}$ be all the elements among the a_{i} with valuation equal to κ. Respectively, let $b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{s}}$ with $j_{1}<j_{2}<\ldots<j_{s}$ be all the elements among the b_{j} with valuation equal to λ.
We have that $i_{1}+j_{1}<i_{m}+j_{n}, \forall(m, n) \neq(1,1)$.
Therefore, the coefficient $c_{i_{1}+j_{1}}$ of $x^{i_{1}+j_{1}}$ in $f(x) g(x)$ is of the form

$$
c_{i_{1}+j_{1}}=a_{i_{1}} b_{j_{1}}+\sum(\text { terms with valuation }>\kappa+\lambda) .
$$

Lemma F (Bourbaki)

Let R be an integrally closed domain and $f(x)=\sum_{i} a_{i} x^{i}, g(x)=\sum_{j} b_{j} x^{j}$ be two polynomials in $R[x]$. If there exists an element $c \in R$ such that all the coefficients of $f(x) g(x)$ belong to $c R$, then all the products $a_{i} b_{j}$ belong to $c R$.

Proof: It is enough to prove the result in the case where R is a valuation ring. Let $\kappa:=\min _{i}\left(v\left(a_{i}\right)\right)$ and $\lambda:=\min _{j}\left(v\left(b_{j}\right)\right)$. Then $\kappa+\lambda=\min _{i, j}\left(v\left(a_{i} b_{j}\right)\right)$. We will show that $\kappa+\lambda \geqslant v(c)$ and thus c divides all the products $a_{i} b_{j}$. Let $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{r}}$ with $i_{1}<i_{2}<\ldots<i_{r}$ be all the elements among the a_{i} with valuation equal to κ. Respectively, let $b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{s}}$ with $j_{1}<j_{2}<\ldots<j_{s}$ be all the elements among the b_{j} with valuation equal to λ.
We have that $i_{1}+j_{1}<i_{m}+j_{n}, \forall(m, n) \neq(1,1)$.
Therefore, the coefficient $c_{i_{1}+j_{1}}$ of $x^{i_{1}+j_{1}}$ in $f(x) g(x)$ is of the form

$$
c_{i_{1}+j_{1}}=a_{i_{1}} b_{j_{1}}+\sum(\text { terms with valuation }>\kappa+\lambda) .
$$

Now, $v\left(\sum(\right.$ terms with valuation $\left.>\kappa+\lambda)\right)>\kappa+\lambda=v\left(a_{i_{1}} b_{j_{1}}\right)$,

Lemma F (Bourbaki)

Let R be an integrally closed domain and $f(x)=\sum_{i} a_{i} x^{i}, g(x)=\sum_{j} b_{j} x^{j}$ be two polynomials in $R[x]$. If there exists an element $c \in R$ such that all the coefficients of $f(x) g(x)$ belong to $c R$, then all the products $a_{i} b_{j}$ belong to $c R$.

Proof: It is enough to prove the result in the case where R is a valuation ring. Let $\kappa:=\min _{i}\left(v\left(a_{i}\right)\right)$ and $\lambda:=\min _{j}\left(v\left(b_{j}\right)\right)$. Then $\kappa+\lambda=\min _{i, j}\left(v\left(a_{i} b_{j}\right)\right)$. We will show that $\kappa+\lambda \geqslant v(c)$ and thus c divides all the products $a_{i} b_{j}$. Let $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{r}}$ with $i_{1}<i_{2}<\ldots<i_{r}$ be all the elements among the a_{i} with valuation equal to κ. Respectively, let $b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{s}}$ with $j_{1}<j_{2}<\ldots<j_{s}$ be all the elements among the b_{j} with valuation equal to λ.
We have that $i_{1}+j_{1}<i_{m}+j_{n}, \forall(m, n) \neq(1,1)$.
Therefore, the coefficient $c_{i_{1}+j_{1}}$ of $x^{i_{1}+j_{1}}$ in $f(x) g(x)$ is of the form

$$
c_{i_{1}+j_{1}}=a_{i_{1}} b_{j_{1}}+\sum(\text { terms with valuation }>\kappa+\lambda) .
$$

Now, $v\left(\sum(\right.$ terms with valuation $\left.>\kappa+\lambda)\right)>\kappa+\lambda=v\left(a_{i_{1}} b_{j_{1}}\right)$, whence

$$
v\left(c_{i_{1}+j_{1}}\right)=\min \left(v\left(a_{i_{1}} b_{j_{1}}\right), v\left(\sum(\text { terms with valuation }>\kappa+\lambda)\right)\right)=\kappa+\lambda .
$$

Lemma F (Bourbaki)

Let R be an integrally closed domain and $f(x)=\sum_{i} a_{i} x^{i}, g(x)=\sum_{j} b_{j} x^{j}$ be two polynomials in $R[x]$. If there exists an element $c \in R$ such that all the coefficients of $f(x) g(x)$ belong to $c R$, then all the products $a_{i} b_{j}$ belong to $c R$.

Proof: It is enough to prove the result in the case where R is a valuation ring. Let $\kappa:=\min _{i}\left(v\left(a_{i}\right)\right)$ and $\lambda:=\min _{j}\left(v\left(b_{j}\right)\right)$. Then $\kappa+\lambda=\min _{i, j}\left(v\left(a_{i} b_{j}\right)\right)$. We will show that $\kappa+\lambda \geqslant v(c)$ and thus c divides all the products $a_{i} b_{j}$. Let $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{r}}$ with $i_{1}<i_{2}<\ldots<i_{r}$ be all the elements among the a_{i} with valuation equal to κ. Respectively, let $b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{s}}$ with $j_{1}<j_{2}<\ldots<j_{s}$ be all the elements among the b_{j} with valuation equal to λ.
We have that $i_{1}+j_{1}<i_{m}+j_{n}, \forall(m, n) \neq(1,1)$.
Therefore, the coefficient $c_{i_{1}+j_{1}}$ of $x^{i_{1}+j_{1}}$ in $f(x) g(x)$ is of the form

$$
c_{i_{1}+j_{1}}=a_{i_{1}} b_{j_{1}}+\sum(\text { terms with valuation }>\kappa+\lambda) .
$$

Now, $v\left(\sum(\right.$ terms with valuation $\left.>\kappa+\lambda)\right)>\kappa+\lambda=v\left(a_{i_{1}} b_{j_{1}}\right)$, whence

$$
v\left(c_{i_{1}+j_{1}}\right)=\min \left(v\left(a_{i_{1}} b_{j_{1}}\right), v\left(\sum(\text { terms with valuation }>\kappa+\lambda)\right)\right)=\kappa+\lambda .
$$

Now, since all the coefficients of $f(x) g(x)$ are divisible by c, we have that $v\left(c_{i_{1}+j_{1}}\right) \geqslant v(c)$, as desired.

Lemma T (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let \mathfrak{p} be a prime ideal of R. Then

$$
(R[x])_{\mathfrak{p} R[x]} \cap F[x]=R_{\mathfrak{p}}[x] .
$$

Lemma T (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let \mathfrak{p} be a prime ideal of R. Then

$$
(R[x])_{\mathfrak{p} R[x]} \cap F[x]=R_{\mathfrak{p}}[x] .
$$

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq(R[x])_{\mathfrak{p} R[x]} \cap F[x]$ is obvious.

Lemma T (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let \mathfrak{p} be a prime ideal of R. Then

$$
(R[x])_{\mathfrak{p} R[x]} \cap F[x]=R_{\mathfrak{p}}[x] .
$$

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq(R[x])_{\mathfrak{p} R[x]} \cap F[x]$ is obvious. Now, let $f(x)$ be an element of $F[x]$. Then $f(x)$ can be written in the form $r(x) / \xi$, where $r(x) \in R[x]$ and $\xi \in R$.

Lemma T (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let \mathfrak{p} be a prime ideal of R. Then

$$
(R[x])_{\mathfrak{p} R[x]} \cap F[x]=R_{\mathfrak{p}}[x] .
$$

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq(R[x])_{\mathfrak{p} R[x]} \cap F[x]$ is obvious. Now, let $f(x)$ be an element of $F[x]$. Then $f(x)$ can be written in the form $r(x) / \xi$, where $r(x) \in R[x]$ and $\xi \in R$. If, moreover, $f(x)$ belongs to $(R[x])_{\mathfrak{p} R[x]}$, then there exist $s(x), t(x) \in R[x]$ with $t(x) \notin \mathfrak{p} R[x]$ such that $f(x)=s(x) / t(x)$.

Lemma T (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let \mathfrak{p} be a prime ideal of R. Then

$$
(R[x])_{\mathfrak{p} R[x]} \cap F[x]=R_{\mathfrak{p}}[x] .
$$

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq(R[x])_{\mathfrak{p} R[x]} \cap F[x]$ is obvious. Now, let $f(x)$ be an element of $F[x]$. Then $f(x)$ can be written in the form $r(x) / \xi$, where $r(x) \in R[x]$ and $\xi \in R$. If, moreover, $f(x)$ belongs to $(R[x])_{\mathfrak{p} R[x]}$, then there exist $s(x), t(x) \in R[x]$ with $t(x) \notin \mathfrak{p} R[x]$ such that $f(x)=s(x) / t(x)$. Thus, we have

$$
f(x)=\frac{r(x)}{\xi}=\frac{s(x)}{t(x)} .
$$

Lemma T (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let \mathfrak{p} be a prime ideal of R. Then

$$
(R[x])_{\mathfrak{p} R[x]} \cap F[x]=R_{\mathfrak{p}}[x] .
$$

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq(R[x])_{\mathfrak{p} R[x]} \cap F[x]$ is obvious. Now, let $f(x)$ be an element of $F[x]$. Then $f(x)$ can be written in the form $r(x) / \xi$, where $r(x) \in R[x]$ and $\xi \in R$. If, moreover, $f(x)$ belongs to $(R[x])_{\mathfrak{p} R[x]}$, then there exist $s(x), t(x) \in R[x]$ with $t(x) \notin \mathfrak{p} R[x]$ such that $f(x)=s(x) / t(x)$. Thus, we have

$$
f(x)=\frac{r(x)}{\xi}=\frac{s(x)}{t(x)} .
$$

All the coefficients of the product $r(x) t(x)$ belong to ξR.

Lemma T (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let \mathfrak{p} be a prime ideal of R. Then

$$
(R[x])_{\mathfrak{p} R[x]} \cap F[x]=R_{\mathfrak{p}}[x] .
$$

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq(R[x])_{\mathfrak{p} R[x]} \cap F[x]$ is obvious. Now, let $f(x)$ be an element of $F[x]$. Then $f(x)$ can be written in the form $r(x) / \xi$, where $r(x) \in R[x]$ and $\xi \in R$. If, moreover, $f(x)$ belongs to $(R[x])_{\mathfrak{p} R[x]}$, then there exist $s(x), t(x) \in R[x]$ with $t(x) \notin \mathfrak{p} R[x]$ such that $f(x)=s(x) / t(x)$. Thus, we have

$$
f(x)=\frac{r(x)}{\xi}=\frac{s(x)}{t(x)} .
$$

All the coefficients of the product $r(x) t(x)$ belong to ξR. Due to Lemma F , if $r(x)=\sum_{i} a_{i} x^{i}$ and $t(x)=\sum_{j} b_{j} x^{j}$, then all the products $a_{i} b_{j}$ belong to ξR.

Lemma T (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let \mathfrak{p} be a prime ideal of R. Then

$$
(R[x])_{\mathfrak{p} R[x]} \cap F[x]=R_{\mathfrak{p}}[x] .
$$

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq(R[x])_{\mathfrak{p} R[x]} \cap F[x]$ is obvious. Now, let $f(x)$ be an element of $F[x]$. Then $f(x)$ can be written in the form $r(x) / \xi$, where $r(x) \in R[x]$ and $\xi \in R$. If, moreover, $f(x)$ belongs to $(R[x])_{\mathfrak{p} R[x]}$, then there exist $s(x), t(x) \in R[x]$ with $t(x) \notin \mathfrak{p} R[x]$ such that $f(x)=s(x) / t(x)$. Thus, we have

$$
f(x)=\frac{r(x)}{\xi}=\frac{s(x)}{t(x)} .
$$

All the coefficients of the product $r(x) t(x)$ belong to ξR. Due to Lemma F , if $r(x)=\sum_{i} a_{i} x^{i}$ and $t(x)=\sum_{j} b_{j} x^{j}$, then all the products $a_{i} b_{j}$ belong to ξR. Now, the fact that $t(x) \notin \mathfrak{p} R[x]$ implies there exists j_{0} such that $b_{j_{0}} \notin \mathfrak{p}$.

Lemma T (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let \mathfrak{p} be a prime ideal of R. Then

$$
(R[x])_{\mathfrak{p} R[x]} \cap F[x]=R_{\mathfrak{p}}[x] .
$$

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq(R[x])_{\mathfrak{p} R[x]} \cap F[x]$ is obvious. Now, let $f(x)$ be an element of $F[x]$. Then $f(x)$ can be written in the form $r(x) / \xi$, where $r(x) \in R[x]$ and $\xi \in R$. If, moreover, $f(x)$ belongs to $(R[x])_{\mathfrak{p} R[x]}$, then there exist $s(x), t(x) \in R[x]$ with $t(x) \notin \mathfrak{p} R[x]$ such that $f(x)=s(x) / t(x)$. Thus, we have

$$
f(x)=\frac{r(x)}{\xi}=\frac{s(x)}{t(x)} .
$$

All the coefficients of the product $r(x) t(x)$ belong to ξR. Due to Lemma F , if $r(x)=\sum_{i} a_{i} x^{i}$ and $t(x)=\sum_{j} b_{j} x^{j}$, then all the products $a_{i} b_{j}$ belong to ξR. Now, the fact that $t(x) \notin \mathfrak{p} R[x]$ implies there exists j_{0} such that $b_{j_{0}} \notin \mathfrak{p}$. Since $a_{i} b_{j_{0}} \in \xi R$, for all i, we deduce that $b_{j_{0}} f(x)=\left(b_{j_{0}} r(x)\right) / \xi \in R[x]$ and so all the coefficients of $f(x)$ belong to R_{p}.

Lemma T (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let \mathfrak{p} be a prime ideal of R. Then

$$
(R[x])_{\mathfrak{p} R[x]} \cap F[x]=R_{\mathfrak{p}}[x] .
$$

Proof: The inclusion $R_{\mathfrak{p}}[x] \subseteq(R[x])_{\mathfrak{p} R[x]} \cap F[x]$ is obvious. Now, let $f(x)$ be an element of $F[x]$. Then $f(x)$ can be written in the form $r(x) / \xi$, where $r(x) \in R[x]$ and $\xi \in R$. If, moreover, $f(x)$ belongs to $(R[x])_{\mathfrak{p} R[x]}$, then there exist $s(x), t(x) \in R[x]$ with $t(x) \notin \mathfrak{p} R[x]$ such that $f(x)=s(x) / t(x)$. Thus, we have

$$
f(x)=\frac{r(x)}{\xi}=\frac{s(x)}{t(x)} .
$$

All the coefficients of the product $r(x) t(x)$ belong to ξR. Due to Lemma F , if $r(x)=\sum_{i} a_{i} x^{i}$ and $t(x)=\sum_{j} b_{j} x^{j}$, then all the products $a_{i} b_{j}$ belong to ξR. Now, the fact that $t(x) \notin \mathfrak{p R}[x]$ implies there exists j_{0} such that $b_{j_{0}} \notin \mathfrak{p}$. Since $a_{i} b_{j_{0}} \in \xi R$, for all i, we deduce that $b_{j_{0}} f(x)=\left(b_{j_{0}} r(x)\right) / \xi \in R[x]$ and so all the coefficients of $f(x)$ belong to R_{p}.

This result generalises to polynomial rings and Laurent polynomial rings in multiple variables.

Lemma B (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let $s(x)$ and $t(x)$ be two elements of $R[x]$ such that $s(x) / t(x) \in F[x]$. If one of the coefficients of $t(x)$ is a unit in R, then $s(x) / t(x) \in R[x]$.

Lemma B (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let $s(x)$ and $t(x)$ be two elements of $R[x]$ such that $s(x) / t(x) \in F[x]$. If one of the coefficients of $t(x)$ is a unit in R, then $s(x) / t(x) \in R[x]$.

Proof: Since $s(x) / t(x) \in F[x]$, there exist $r(x) \in R[x]$ and $\xi \in R$ such that

$$
\frac{s(x)}{t(x)}=\frac{r(x)}{\xi}
$$

Lemma B (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let $s(x)$ and $t(x)$ be two elements of $R[x]$ such that $s(x) / t(x) \in F[x]$. If one of the coefficients of $t(x)$ is a unit in R, then $s(x) / t(x) \in R[x]$.

Proof: Since $s(x) / t(x) \in F[x]$, there exist $r(x) \in R[x]$ and $\xi \in R$ such that

$$
\frac{s(x)}{t(x)}=\frac{r(x)}{\xi} .
$$

All the coefficients of the product $r(x) t(x)$ belong to ξR.

Lemma B (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let $s(x)$ and $t(x)$ be two elements of $R[x]$ such that $s(x) / t(x) \in F[x]$. If one of the coefficients of $t(x)$ is a unit in R, then $s(x) / t(x) \in R[x]$.

Proof: Since $s(x) / t(x) \in F[x]$, there exist $r(x) \in R[x]$ and $\xi \in R$ such that

$$
\frac{s(x)}{t(x)}=\frac{r(x)}{\xi} .
$$

All the coefficients of the product $r(x) t(x)$ belong to ξR. Due to Lemma F , if $r(x)=\sum_{i} a_{i} x^{i}$ and $t(x)=\sum_{j} b_{j} x^{j}$, then all the products $a_{i} b_{j}$ belong to ξR.

Lemma B (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let $s(x)$ and $t(x)$ be two elements of $R[x]$ such that $s(x) / t(x) \in F[x]$. If one of the coefficients of $t(x)$ is a unit in R, then $s(x) / t(x) \in R[x]$.

Proof: Since $s(x) / t(x) \in F[x]$, there exist $r(x) \in R[x]$ and $\xi \in R$ such that

$$
\frac{s(x)}{t(x)}=\frac{r(x)}{\xi} .
$$

All the coefficients of the product $r(x) t(x)$ belong to ξR. Due to Lemma F , if $r(x)=\sum_{i} a_{i} x^{i}$ and $t(x)=\sum_{j} b_{j} x^{j}$, then all the products $a_{i} b_{j}$ belong to ξR. By assumption, there exists j_{0} such that $b_{j_{0}}$ is a unit in R.

Lemma B (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let $s(x)$ and $t(x)$ be two elements of $R[x]$ such that $s(x) / t(x) \in F[x]$. If one of the coefficients of $t(x)$ is a unit in R, then $s(x) / t(x) \in R[x]$.

Proof: Since $s(x) / t(x) \in F[x]$, there exist $r(x) \in R[x]$ and $\xi \in R$ such that

$$
\frac{s(x)}{t(x)}=\frac{r(x)}{\xi} .
$$

All the coefficients of the product $r(x) t(x)$ belong to ξR. Due to Lemma F , if $r(x)=\sum_{i} a_{i} x^{i}$ and $t(x)=\sum_{j} b_{j} x^{j}$, then all the products $a_{i} b_{j}$ belong to ξR. By assumption, there exists j_{0} such that $b_{j_{0}}$ is a unit in R. Since $a_{i} b_{j_{0}} \in \xi R$ for all i, we deduce that $a_{i} \in \xi R$ for all i, whence $r(x) / \xi \in R[x]$.

Lemma B (C.)

Let R be an integrally closed domain and let F be its field of fractions. Let $s(x)$ and $t(x)$ be two elements of $R[x]$ such that $s(x) / t(x) \in F[x]$. If one of the coefficients of $t(x)$ is a unit in R, then $s(x) / t(x) \in R[x]$.

Proof: Since $s(x) / t(x) \in F[x]$, there exist $r(x) \in R[x]$ and $\xi \in R$ such that

$$
\frac{s(x)}{t(x)}=\frac{r(x)}{\xi} .
$$

All the coefficients of the product $r(x) t(x)$ belong to ξR. Due to Lemma F , if $r(x)=\sum_{i} a_{i} x^{i}$ and $t(x)=\sum_{j} b_{j} x^{j}$, then all the products $a_{i} b_{j}$ belong to ξR. By assumption, there exists j_{0} such that $b_{j 0}$ is a unit in R. Since $a_{i} b_{j_{0}} \in \xi R$ for all i, we deduce that $a_{i} \in \xi R$ for all i, whence $r(x) / \xi \in R[x]$.

This result generalises to polynomial rings and Laurent polynomial rings in multiple variables.

Preview

Let $\lambda, \mu \in \mathbb{C}^{\times}$and $a, b, c \in \mathbb{N}$ with $\operatorname{gcd}(a, b, c)=1$. The polynomial $\lambda x^{a} y^{b}+\mu z^{c}$ is irreducible in $\mathbb{C}[x, y, z]$, because $\lambda x+\mu$ is irreducible in $\mathbb{C}[x]$.

